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Peristaltic Motion of a Particle ± Fluid Suspension in
a Planar Channel
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We analyze the mechanics of peristaltic pumping of a particle±fluid suspension
in a channel. A perturbation series (to second order) in dimensionless wave
number of an infinite harmonic travelling wave is used to obtain an explicit form
for the velocities and a relation between the flow rate and the pressure gradient
in terms of the Reynolds number, concentration of the particles, suspension
parameters, and the occlusion. We discuss the effect of the concentration of the
particles, the Reynolds number, and the wave number on the pressure rise,
peristaltic pumping, augmented pumping, and backward pumping. We also discuss
the phenomenon of trapping.

1. INTRODUCTION

Peristaltic pumping has been the object of scientific and engineering

research during the past few decades. It occurs due to the action of a progres-

sive wave which propagates along the length of a distensible tube containing

liquid. The pumping of fluids through muscular tubes by means of peristaltic
waves is an important biological mechanism.

Study of the mechanism of peristalsis from both the mechanical and

physiological viewpoints has been the object of scientific research. Since the

first investigation of Latham (1996), several theoretical and experimental

attempts have been made to understand peristaltic action in different situa-

tions. A review of much of the early literature is presented by Jaffrin and
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Shapiro (1971). A summary of most of the experimental and theoretical

investigations reported with details of the geometry, fluid, Reynolds number,

wavelength parameter, wave amplitude parameter, and wave shape has is
given by Srivastava and Srivastava (1984).

Fluid dynamics of a particulate suspension (the suspended matter may

consist of solid particles, liquid droplets, gas bubbles, etc.) has from historic

times been the object of scientific and engineering research. Theoretical study

of this fluid system is very useful in understanding various engineering

problems concerned with powder technology, rain erosion in guided missiles,
sedimentation, atmospheric fallout, combustion, fluidization, electrostatic

precipitation of dust, nuclear reactor cooling, acoustics batch settling, aerosol

and paint spraying, luner ash flows; in medicine, where erythrocyte sedimenta-

tion has become a standard clinical test; and in oceanography as well as other

fields. The particulate suspension theory of blood has become the object of

scientific research (Hill and Bedford, 1981; Srivastava and Srivastava, 1983;
Trowbridge, 1984; Oka, 1985). The flows of suspensions of particles in a

fluid have been studied by Marble (1971), Drew (1979), Bedford and Drum-

heller (1983), and Soo (1984). Applications of the theory of particle±fluid

mixtures to microcirculation and erythrocyte sedimentation include the work

of Bungay and Brenner (1973), Hill and Bedford (1981), Srivastava and
Srivastava (1983), Trowbridge (1984), and Oka (1985). Peristaltic transport

of a particle±fluid suspension was studied by Hung and Brown (1976), Kaimal

(1978), and Srivastava and Srivastava (1989, 1995).

Most of the analytical studies use perturbation series in a small parameter

such as the amplitude ratio or the dimensionless wave number, but it appears

that no rigorous attempt has been made to study the effects of Reynolds
number, wave number, and concentration of the particles on the pressure

rise, peristaltic pumping, augmented pumping, and backward pumping for a

particle-fluid suspension. The purpose of this paper is to study the peristaltic
pumping of a particle ± fluid suspension in a planar channel.

A regular perturbation series is used to solve the present problem;

variables are expanded in a power series of the wave number a , which is
defined as the ratio of half-width of the channel to the wavelength of the

peristaltic wave. Closed-form solutions up to order a 2 are presented. The

pressure rise per wavelength is obtained as a function of the time-averaged

flow rate.

2. FORMULATION OF THE PROBLEM

Consider the two-dimensional flow of a mixture of small, spherical,

rigid particles in an incompressible Newtonian viscous fluid in an infinite

channel having width 2b. We assume an infinite wave train traveling with
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velocity c along the walls. We choose a rectangular coordinate system for

the channel with X along the centerline in the direction of wave propagation

and Y transverse to it.
The equations governing the conservation of mass and linear momentum

for both the fluid and particle phase using a continuum approach are expressed

as follows (Drew, 1979; Srivastava and Srivastava, 1989):

Fluid phase:

(1 2 C ) r f
dWf

dt
5 2 (1 2 C ) ¹ P 1 (1 2 C ) m s(C ) ¹ 2 Wf 1 CS(Wp 2 W f) (1)

¹ ? Wf 5 0 (2)

Particulate phase:

C r p
dWp

dt
5 2 C ¹ P 1 CS(W f 2 Wp) (3)

¹ ? Wp 5 0 (4)

In equations (1)±(4), W f , Wp denote fluid phase and particulate phase

velocity vectors, respectively, d /dt denotes the material time derivative (the

overbar refers to a dimensional quantity), r f , r p are the actual densities of

the materials constituting the fluid and particulate phase, respectively, (1 2
C ) r f , C r p denote the fluid phase density and the particulate phase density,
respectively, P denotes the pressure, C is the volume fraction density of the

particles, m s(C ) is the particle fluid mixture viscosity, and S is the drag

coefficient of the interaction for the force exerted by one phase on the other.

The concentration of the particles is considered so small that the field

interaction between particles may be neglected. We choose the volume frac-

tion density to be constant. The expression for the drag coefficient for the
present problem is selected as

S 5
9

2

m 0

a 2 l 8(C )

l 8(C ) 5
4 1 3 [8C 2 3C 2]1/2 1 3C

[2 2 3C ]2 (5)

where m 0 is the fluid viscosity, and a is the radius of the particles. Relation

(5) represents the classical Stokes drag for small particle Reynolds number,

modified to account for the finite particulate fractional volume through the

function l 8(C ) obtained by Tam (1969). We use the empirical relation for
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the viscosity of the suspension suggested by Charm and Kurland (1974),

m s(C ) 5 m 0
1

1 2 qC

q 5 0.07 exp [2.49C 1
1107

T
exp( 2 1.69C )] (6)

where T is the absolute temperature (K). The viscosity of the suspension

expressed by this formula is found to be reasonably accurate up to C 5 0.6.

Let (U f , Vf), (Up , Vp) be the velocity components for the fluid and

particulate phases in the X and Y directions, respectively.

The geometry of the wall surface is defined as

h 5 b 1 a sin F 2 p
l

(X 2 ct) G (7)

and the boundary conditions are

- U f

- Y
5

- Up

- Y
5 0, Vf 5 Vp 5 0 at Y 5 0

Uf 5 0 at Y 5 h (8)

where a is the wave amplitude and l is the wavelength. We also assume the

wall to have only a transverse motion.

We shall carry out this investigation in a coordinate system moving with

the wave speed, in which the boundary shape is stationary. The coordinates
and velocities in the laboratory frame (X, Y) and the wave frame (x, y) are

related by

x 5 X 2 ct , y 5 Y

uf 5 Uf 2 c, up 5 Up 2 c (9)

vf 5 Vf , vp 5 Vp

where (uf , vf), (up , vp) are the velocity components in the wave frame.

If we employ these transformations in the governing equations of motion

(1)±(4) and then introduce the dimensionless variables

x 5
2 p x

l
, y 5

y

b
, uf 5

uf

c
, up 5

up

c
, vf 5

vf

c
, vp 5

vp

c

h 5
h(x)

b
, P 5

2 p b 2

l c m s

P(x) (10)
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we find that the continuity equations, after defining the dimensionless stream

functions C f (x, y) and C p(x, y) by

up 5
- C f

- y
, up 5

- C p

- y
, vf 5 2 a

- C f

- x
, vp 5 2 a

- C p

- x
(11)

are satisfied identically, and after eliminating the pressure terms, the equations

of motion become

(1 2 C ) a ? Re [ C fy ¹ Ä 2 C fx 2 C fx ¹ Ä 2 C fy] 5 ¹ Ä 2 ¹ Ä 2 C f 1 CM( ¹ Ä 2 C p 2 ¹ Ä 2 C f) (12)

C a ? Re [ C py ¹ Ä 2 C px 2 C px ¹ Ä 2 C py] 5 CN( ¹ Ä 2 C f 2 ¹ Ä 2 C p) (13)

where the dimensionless wave number a , the Reynolds number Re, and the

suspension parameters M and N are defined by

Re 5
cb r f

(1 2 C ) m s

M 5
Sb2

(1 2 C ) m s

, N 5
Sb2 r f

(1 2 C ) m s r p

a 5
2 p b

l

and

¹ Ä 2 5 a 2 - 2

- x 2 1
- 2

- y 2 (14)

3. RATE OF VOLUME FLOW AND BOUNDARY CONDITIONS

The instantaneous volume flow rate in the fixed frame is given by

(Ungarish, 1993)

Qf 5 (1 2 C ) # h

0

U f (X, Y, t) dY (15)

Qp 5 C # h

0

Up (X, Y, t) dY (16)

Qm 5 (1 2 C ) # h

0

Uf (X, Y, t) dY 1 C # h

0

Up(X, Y, t) dY (17)

where Qf , Qp , and Qm are the volume flow rate for the fluid phase, particulate

phase, and the mixture, respectively; h is a function of X and t.
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The instantaneous volume flow rate in the wave frame is given by

qf 5 (1 2 C ) # h

0

uf(x, y) d y (18)

qp 5 C # h

0

up(x, y) d y (19)

qm 5 (1 2 C ) # h

0

uf (x, y) dy 1 C # h

0

up(x, y) d y (20)

where h is a function of x alone.

We shall be interested only with the volume flow rate of the fluid in

this study. On substituting (9) into (15) and making use of (18), we find that
the two rates of volume are related through

Qf 5 qf 1 (1 2 C )ch (21)

The time-mean flow over a period T at a fixed position X is defined as

Qf 5
1

T #
T

0

Qf dt (22)

Substituting (21) into (22), and integrating, we get

Qf 5 qf 1 (1 2 C )ac (23)

On defining the dimensionless time-mean flows u and F, respectively,

in the fixed and wave frame as

u [
Q f

(1 2 C )ac
, F [

qf

(1 2 C )ac
(24)

we find that (23) may be written as

u 5 F 1 1 (25)

where

F 5 #
h

0

- C f

- y
dy 5 C f (h) 2 C f (0) (26)

We note that h represents the dimensionless form of the surface of the

peristaltic wall:

h (x) 5 1 1 f sin x (27)
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where f [ b /a is the amplitude ratio or occlusion. If we choose the zero

value of the streamline at ( y 5 0), then

C f(h) 5 F (28)

The boundary conditions for the dimensionless stream function in the

wave frame are

C f 5 C p 5 0, C fyy 5 C pyy 5 0 at y 5 0 (29)

C fy 5 2 1, C f 5 F at y 5 h

4. PERTURBATION SOLUTION

In order to solve the present problem, we expand the flow quantities in
a power series of the small parameter a as (Siddiqui and Schwarz, 1994)

C f 5 C f0 1 a C f 1 1 a 2 C f2 1 ? ? ?

C p 5 C p0 1 a C p1 1 a 2 C p2 1 ? ? ?

F 5 F0 1 a F1 1 a 2F2 1 ? ? ?

and

- P

- x
5

- P0

- x
1 a

- P1

- x
1 a 2 - P2

- x
1 ? ? ? (30)

On substituting (30) into (12), (13), and (29) and collecting terms of

equal powers of a and then equating the coefficients of like powers on both
sides of the equations, we obtain the following set of problems.

System of Order Zero:

C f0yyyy 1 CM( C p0yy 2 C f0yy) 5 0 (31)

CN( C f0yy 2 C p0yy) 5 0 (32)

with the boundary conditions

C f0 5 C p0 5 0, C f0yy 5 C p0yy 5 0 at y 5 0

C f0 5 F0, C f 0y 5 2 1 at y 5 h (33)

The solutions of the stream functions and the axial velocities are given as

C f0 5 2
3

2
(F0 1 h) 1 y 3

3h 3 2
y

h 2 2 y (34)

C p0 5 2
3

2
(F0 1 h) 1 y 3

3h 3 2
y

h 2 2 y 1
3(F0 1 h)

Mh3 y (35)
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uf0 5 2
3

2h
(F0 1 h) 1 y

2

h 2 2 1 2 2 1 (36)

up0 5 2
3

2h
(F0 1 h) 1 y

2

h 2 2 1 2 2 1 1
3(F0 1 h)

Mh3 (37)

System of Order One:

(1 2 C ) ? Re[ C f0y C f0xyy 2 C f0x C f0yyy] 5 C f1yyyy 1 CM( C p1yy 2 C f1yy (38)

C ? Re[ C p0y C p0xyy 2 C p0x C p0yyy] 5 CN( C f1yy 2 C p1yy) (39)

The solutions of (38) and (39) subject to the first-order boundary

conditions

C f1 5 C p1 5 0, C f1yy 5 C p1yy 5 0 at y 5 0 (40)

C f1 5 F1, C f1y 5 0 at y 5 h

are given as

C f1 5 bÄ 1( y7 2 3h 4y 3 1 2h 6y) 1 bÄ 2( y5 2 2h 2y 3 1 h 4y)

1
3

2
F1 1 yh 2

y 3

3h 3 2 (41)

C p1 5 bÄ 1 1 y 7 2 3h 4y 3 1 2h 6y 2
42

M
y 5 1

18

M
h 4y 2

1 bÄ 2 1 y 5 2 2h 2y 3 1 h 4y 2
20

M
y 3 1

12

M
h 2y 2 1 (1 2 C )

? Re 1 1

M
2

1

N 2 1 1

20
b10y

5 1
1

6
b20y

3 2
1 E 1

3

2
F1 1 yh 1

2y

Mh3 2
y 3

3h 3 2 (42)

where

bÄ 1 5
(1 2 C )Re b

840
b10, b10 5 2

3h8

h 7 (3F 2
0 1 5F0h 1 2h 2)

bÄ 2 5
(1 2 C )Re b

120
b20, b20 5

3h8

h 5 (3F 2
0 1 3F0h 1 h 2)
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E1 5 E10 1 E11 1 E12, E10 5
3(1 2 C )Re

MN

(6F 2
0 1 6F0h 1 h 2)h8

h 5

E11 5 2
3

4
(1 2 C )Re 1 1

M
2

1

N 2 F0(3F0 1 h)h8

h 3 ,

E12 5 2
3(1 2 C )Re

NM 2 b10

b 5 1 1
CM

(1 2 C )N
(43)

and the axial velocities at this order take the form

uf1 5 bÄ 1 (7y 6 2 9h 4y 2 1 2h 6) 1 bÄ 2 (5y 4 2 6h 2y 2 1 h 4)

1
3

2

F1

h 1 1 2
y 2

h 2 2 (44)

up1 5 bÄ 1 1 7y 6 2 9h 4y 2 1 2h 6 2
210

M
y 4 1

18

M
h 4 2

1 bÄ 2 1 5y 4 2 6h 2y 2 1 h 4 2
60

M
y 2 1

12

M
h 2 2 1 (1 2 C )

? Re 1 1

M
2

1

N 2 1 14 b10y
4 1

1

2
b20y

2 2
1 E1 1

3

2

F1

h 1 1 1
2

Mh2 2
y 2

h 2 2 (45)

System of Order Two:

(1 2 C ) ? Re[ C f1y C f0xyy 1 C f0y C f1xyy 2 C f 1x C f0yyy 2 C f0x C f1yyy]

5 C f2yyy 1 2 C f0xxyy 1 CM( C p2yy 2 C f 2yy) (46)

C ? Re[ C p1y C p0xyy 1 C p0y C p1xyy 2 C p1x C p0yyy 2 C p0x C p1yyy]

5 CN( C f2yy 2 C p2yy) (47)

Using the zeroth-order and the first -order solutions in (46) and (47)

and then applying the boundary conditions

C f2 5 C p2 5 0, C f2yy 5 C p2yy 5 0 at y 5 0 (48)

C f2 5 F2, C f 2y 5 0 at y 5 h
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we find that the stream functions C f2, C p2 turn out to be

C f2 5
a21

660 1 1

12
y 11 2

5

12
y 3h 8 1

1

3
yh10 2 1

a22

3024
( y9 2 4y 3h 6 1 3yh8)

1
a23

105 1 18 y 7 2
3

8
y 3h 4 1

1

4
yh6 2 1

a24

20 1 16 y 5 2
1

3
y 3h 2 1

1

6
yh4 2

1
3

2
F2 1 yh 2

y 3

3h 3 2 (49)

C p2 5
a21

660 F 1

12
y 11 2

5

12
y 3h 8 1

1

3
yh10 2

10

12M
(11y 9 2 3yh8) G

1
a22

3024 F y 9 2 4y 3h 6 1 3yh8 2
24

M
(3y 7 2 yh6) G

1
a23

105 F 1

8
y 7 2

3

8
y 3h 4 1

1

4
yh6 2

3

4M
(7y 5 2 3yh4) G

1
a24

20 F 1

6
y 5 2

1

3
y 3h 2 1

1

6
yh4 2

2

3M
(5y 3 2 3yh2) G

1 z1y
9 1 z2y

7 1 z3y
5 1 z4y

3 1 z5y

1
3

2
F2 1 yh 1

2y

Mh3 2
y 3

3h 3 2 (50)

and the axial velocities at this order take the form

uf2 5
a21

660 1 11

12
y 10 2

15

12
y 2h 8 1

1

3
h 10 2 1

a22

3024
(9y 8 2 12y 2h 6 1 3h 8)

1
a23

105 1 78 y 6 2
9

8
y 2h 4 1

1

4
h 6 2 1

a24

20 1 56 y 4 2 y 2h 2 1
1

6
h 4 2

1
3

2
F2 1 1h 2

y 2

h 3 2 (51)

up2 5
a21

660 F 11

12
y 10 2

15

12
y 2h 8 1

1

3
h 10 2

10

12M
(99y 8 2 3h 8) G

1
a22

3024 F 9y 8 2 12y 2h 6 1 3h 8 2
24

M
(21y 6 2 h 6) G
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1
a23

105 F 7

8
y 6 2

9

8
y 2h 4 1

1

4
h 6 2

3

4M
(35y 4 2 3h 4) G

1
a24

20 F 5

6
y 4 2 y 2h 2 1

1

6
h 4 2

2

3M
(15y 2 2 3h 2) G

1 9z1y
8 1 7z2 y 6 1 5z3y

4 1 3z4y
2 1 z5 1

3

2
F2 1 1h 1

2

Mh3 2
y 2

h 3 2 (52)

where

a21 5 (1 2 C )Re b a10,

a22 5 (1 2 C ) Re b a11 2 (1 2 C ) Re ? a12 1
CRe

N
a13

a23 5 (1 2 C ) Re ? a14 1
CRe

N
a15,

a24 5 (1 2 C )Re ? a16 1 a17 1
CRe

N
a18

a10 5 2 84
(3F0 1 2h)h8

h 4 bÄ 1 2 60
(F0 1 h)

h 3 bÄ 1x,

a11 5 315
F0h8

h 2 bÄ 1 1 21
3F0 1 h

h
bÄ 1x

a12 5 15
(3F0 1 2h)h8

h 4 j 1 1 27
F0 1 h

h 3 j 1x,

a13 5 630
(3F0 1 2h)h8

h 4 bÄ 1 1 126
F0 1 h

h 3 bÄ 1x

a14 5 90
F0h8

h 2 j 1 1 10
3F0 1 h

h
j 1x 1 6

(3F0 1 2h)h8

h 4 j 2 2 6
F0 1 h

h 3 j 2x

a15 5 180
(3F0 1 2h)h8

h 4 j 3 1 60
F0 1 h

h 3 j 3x

a16 5 9
F0h8

h 2 j 2 1 3
3F0 1 h

h
j 2x 1 3

(3F0 1 2h)h8

h 4 j 4 1 3
F0 1 h

h 3 j 4x
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a17 5 2 6
(3F0 1 2h)h9

h 4 1 36
(2F0 1 h)h 82

h 5 ,

a18 5 18
(3F0 1 2h)h8

h 4 j 5 1 18
F0 1 h

h 3 j 5x

j 1 5 b bÄ 2 2
CMRe

20(1 2 C )N 2 b10,

j 2 5 b cÄ 1 2
CMRe

6(1 2 C )N 2 b20, j 3 5 bÄ 2 2
Re

20N
b10

j 4 5 b cÄ 3 1
CM

(1 2 C )N F E1 2
6

M
cÄ 1 G , j 5 5 cÄ 1 2

Re

6N
b20

cÄ 1 5 2
F1

2h 3 2 3bÄ 1h
4 2 2bÄ 2h

2, cÄ 3 5
3F1

2h
1 2bÄ 1h

6 1 bÄ 2h

z1 5
1

72
(1 2 C )Re 1 1

M
2

1

N 2 a1

z2 5
(1 2 C )Re

7 F 2
5

2

(3F0 1 2h)h8

h 4 v 1 2
9

2

F0 1 h

h 3 v 1x

1
105

2

F0h8

h 2 1 1

M
2

1

N 2 bÄ 1

1
7

2

3F0 1 h

h
bÄ 1x 2

105(3F0 1 2h)h8

MNh4 bÄ 1 2
21

MNh3 bÄ 1x G
z3 5

1

5
(1 2 C )Re F 3

2

(3F0 1 2h)h8

h 4 v 2 2
3

2

F0 1 h

h 3 v 2x 1
45

2

F0h8

h 2 v 1

1
5

2

3F0 1 h

h
v 1x 2 45

(3F0 1 2h)h8

MNh4 j 3 2 15
F0 1 h

MNh3 j 3x G
z4 5

a17

12M
1

1

3
(1 2 C )Re F 3

2

(3F0 1 2h)h8

h 4 v 3 1
3

2

F0 1 h

h 3 v 3x

1
9

2

F0h8

h 2 v 2 1
3

2

3F0 1 h

h
v 2x 2 9

(3F0 1 2h)h8

MNh4 j 5 2 9
F0 1 h

MNh3 j 5x G
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z5 5 v 4x 1 (1 2 C )Re[ v 5x 2 v 6x], v 1 5
bÄ 2

M
2

j 3

N
,

v 2 5
cÄ 1

M
2

j 5

N

v 3 5 1 1

M
2

1

N 2 cÄ 3 2
1

N 1 E1 2
6

M
cÄ 1 2 , v 4 5

3F0h8

2Mh2 ,

v 5 5
3F0 1 h

2Mh
cÄ 3

v 6 5
1

N 1 3F0 1 h

2h
1

3(F0 1 h)

Mh3 2 1 cÄ 3 1 E1 2
6

M
cÄ 1 2 (53)

where the prime and the subscript x denote the derivative with respect to x.
The expressions for the stream functions C f (x, y) and C p(x, y), up to

second order, may be respectively written as

C f 5 2
3

2
(F0 1 h) 1 y 3

3h 3 2
y

h 2 2 y

1 a F bÄ 1( y7 2 3h 4y 3 1 2h 6y) 1 bÄ 2 ( y5 2 2h 2y 3 1 h 4y)

1
3

2
F1 1 yh 2

y 3

3h 3 2 G
1 a 2 F a21

660 1 1

12
y 11 2

5

12
y 3h 8 1

1

3
yh10 2

1
a22

3024
( y9 2 4y 3h 6 1 3yh8)

1
a23

105 1 18 y 7 2
3

8
y 3h 4 1

1

4
yh6 2 1

a24

20 1 16 y 5 2
1

3
y 3h 2 1

1

6
yh4 2

1
3

2
F2 1 yh 2

y 3

3h 3 2 G (54)

C p 5 2
3

2
(F0 1 h) 1 y 3

3h 3 2
y

h 2 2 y 1
3(F0 1 h)

Mh3 y
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1 a F bÄ 1 1 y 7 2 3h 4y 3 1 2h 6y 2
42

M
y 5 1

18

M
h 4y 2

1 bÄ 2 1 y 5 2 2h 2y 3 1 h 4y 2
20

M
y 3 1

12

M
h 2y 2

3 (1 2 C )Re 1 1

M
2

1

N 2 1 1

20
b10y

5 1
1

6
b20y

3 2
1 E1y 1

3

2
F1 1 yh 1

2y

Mh3 2
y 3

3h 3 2 G
1 a 2 F a21

660 1 1

12
y 11 2

5

12
y 3h 8 1

1

3
yh10 2

10

12M
(11y 9 2 3yh8) 2

1
a22

3024 1 y 9 2 4y 3h 6 1 3yh8 2
24

M
(3y 7 2 yh6) 2

1
a23

105 1 18 y 7 2
3

8
y 3h 4 1

1

4
yh6 2

3

4M
(7y 5 2 3yh4)

1
a24

20 1 16 y 5 2
1

3
y 3h 2 1

1

6
yh4 2

2

3M
(5y 3 2 3yh2)

1 z1y
9 1 z2 y 7 1 z3y

5 1 z4y
3 1 z5y 1

3

2
F2 1 yh 1

2y

Mh3 2
y 3

3h 3 2 G (55)

The results of our analysis can be expressed to second order of the flow

rate by defining

F (2) [ F0 1 a F1 1 a 2F2 (56)

Then substituting F0 5 F(2) 2 a F1 2 a 2F2 into (54) and (55) and neglecting

the terms greater than O ( a 2), we obtain the second-order expression for the

stream function C (2)
f, p in terms of the second-order flow rate F(2):

C (2)
f 5 2

3

2
(F (2) 1 h) 1 y 3

3h 3 2
y

h 2 2 y

1 a [BÄ 1( y7 2 3h 4y 3 1 2h 6y) 1 BÄ 2( y5 2 2h 2y 3 1 h 4y)]

1 a 2 F A21

660 1 1

12
y 11 2

5

12
y 3h 8 1

1

3
yh10 2
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1
A22

3024
( y9 2 4y 3h 6 1 3yh8)

1
A23

105 1 18 y 7 2
3

8
y 3h 4 1

1

4
yh6 2

1
A24

20 1 16 y 5 2
1

3
y 3h 2 1

1

6
yh4 2 G (57)

C (2)
p 5 2

3

2
(F (2) 1 h) 1 y 3

3h 3 2
y

h 2 2 y 1
3(F (2) 1 h)

Mh3 y

1 a F BÄ 1 1 y 7 2 3h 4y 3 1 2h 6y 2
42

M
y 5 1

18

M
h 4y 2

1 BÄ 2 1 y 5 2 2h 2y 3 1 h 4y 2
20

M
y 3

1
12

M
h 2y 2 1 (1 2 C )Re 1 1

M
2

1

N 2 1 1

20
B10y

5 1
1

6
B20y

3 2 1 e1y G
1 a 2 F A21

660 1 1

12
y 11 2

5

12
y 3h 8 1

1

3
yh10 2

10

12M
(11y 9 2 3yh8) 2

1
A22

3024 1 y 9 2 4y 3h 6 1 3yh8 2
24

M
(3y 7 2 yh6) 2

1
A23

105 1 18 y 7 2
3

8
y 3h 4 1

1

4
yh6 2

3

4M
(7y 5 2 3yh4) 2

1
A24

20 1 16 y 5 2
1

3
y 3h 2 1

1

6
yh4 2

2

3M
(5y 3 2 3yh2) 2

1 Z1y
9 1 Z2y

7 1 Z3y
5 1 Z4y

3 1 Z5y G (58)

and the axial velocities can be easily obtained, where

BÄ 1 5
(1 2 C )Re b

840
B10 , B10 5 2

3h8

h 7 (3F (2)2 1 5F (2) h 1 2h 2)

BÄ 2 5
(1 2 C )Re b

120
B20, B20 5

3h8

h 5 (3F (2)2 1 3F (2)h 1 h 2)
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e10 5
3(1 2 C )Re

MN

(6F (2)2 1 6F (2) h 1 h 2)h8

h 5

A10 5 2 84
(3F (2) 1 2h)h8

h 4 BÄ 1 2 60
(F (2) 1 h)

h 3 BÄ 1x

kÄ 1 5 2 3BÄ 1h
4 2 2BÄ 2h

2, kÄ 3 5 2BÄ 1h
6 1 BÄ 2h

4

Z2 5
(1 2 C )Re

7 F 2
5

2

(3F (2) 1 2h)h8

h 4 V 1 2
9

2

F (2) 1 h

h 3 V 1x

1
105

2

F (2)h8

h 2 1 1

M
2

1

N 2 BÄ 1

1
7

2

3F (2) 1 h

h
BÄ 1x 2

105(3F (2) 1 2h)h8

MNh4 BÄ 1 2
21

MNh3 BÄ 1x G
V 6 5

1

N F 3F (2) 1 h

2h
1

3(F (2) 1 h)

Mh3 G F kÄ 3 1 e1 2
6

M
kÄ 1 G (59)

and the other coefficients are the same as those previously defined.

5. PRESSURE GRADIENT

When the flow is steady in the wave frame, one can characterize the

pumping performance by means of the pressure rise per wavelength. On

substituting (30) into the dimensionless equations of motion and equating

the coefficients of like powers of a on both sides of the equations. we obtain
a set of partial differential equations for - P0/ - x, - P1/ - x, and - P2/ - x.

We define the dimensionless pressure rise per wavelength in the wave

frame as

D P l 5 #
2 p

0

dP

dx
dx (60)

Since - P / - x is periodic in x, the pressure rise per wavelength in the

longitudinal direction is independent of y and the integral in (60) can be

evaluated on the axis at y 5 0 (Siddiqui and Schwarz, 1994). Putting (30)

into (60), we obtain

D P l 5 D P l 0 1 a D P l 1 1 a 2 D P l 2 1 ? ? ? (61)

and we compute the pressure rise per wavelength at each order for a wall

shape of the sinusoidal form defined by (27). Using the zeroth-, first-, and
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second-order terms for the pressure gradient in (60) and integrating from 0

to 2 p , we obtain

D P (2)
l 5 2 3(1 2 C )[F (2)I *3 1 I *2 ] 1 a 2L (62)

where

L 5 2 (1 2 C ) F 1

264
S21 1

1

126
S22 1

3

140
S23 1

1

10
S24 G

S21 5 2
6

35
(1 2 C )2 Re2 b 2[3F (2)3I3 1 17F (2)2I2 1 22F (2) I1 1 8I0]

S22 5 (1 2 C )Re b S11 2 (1 2 C )ReS12 1
CRe

N
S13,

S23 5 (1 2 C )ReS14 1
CRe

N
S15

S24 5 (1 2 C )ReS16 1 S17 1
CRe

N
S18

and

S11 5
126

280
(1 2 C )Re b [3F (2)2I2 1 5F (2) I1 1 2I0]

S12 5 2
3

20
(1 2 C )Re b 2[18F (2)3I3 1 57F (2)2I2 1 45F (2)I1 1 13I0]

2
9

10

CMRe

(1 2 C )N 2 [18F (2)3I5 1 69F (2)2I4 1 77F (2)I3 1 26I2]

S13 5 2
27

10
(1 2 C )Re b [6F (2)3I5 1 13F (2)2I4 1 9F (2)I3 1 2I2]

S14 5 2
3

35
(1 2 C )Re b 2 F 33F (2)3I3 1 95F (2)2I2 1 70F (2)I1 1

59

3
I0 G

2
6CMRe

(1 2 C )N 2 [6F (2)3I5 1 15F (2)2I4 1 13F (2)I3 1 4I2]

S15 5 6(1 2 C )Re b [6F (2)3I5 1 9F (2)2I4 1 5F (2)I3 1 I2]

1
36Re

N
[6F (2)3I7 1 13F (2)2I6 1 9F (2)I5 1 2I4]
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S16 5
3

140
(1 2 C )Re b 2[30F (2)3I3 1 70F (2)2I2 1 44F (2)I1 1 11I0]

1
9

70

CRe b
N

[66F (2)3I5 1 87F (2)2I4 1 43F (2)I3 1 8I2

1
18CRe

N 2 [12F (2)3I7 1 18F (2)2I6 1 8F (2)I5 1 I4]

2
9CMRe

2N F 1

M
2

1

N G [6F (2)3I5 1 5F (2)2I4 1 F (2)I3]

1
54CRe

MN2 [6F (2)3I9 1 13F (2)2I8 1 9F (2)I7 1 2I6]

1
3CMRe

(1 2 C )N 2 [3F (2)2I4 1 3F (2)I3 1 I2]

S17 5 12[3F (2)I3 1 2I2]

S18 5 2
9

70
(1 2 C ) Re b [66F (2)3I5 1 87F (2)2I4 1 43F (2)I3 1 8I2]

(63)2
18Re

N
[6F (2)3I7 1 9F (2)2I6 1 5F (2)I5 1 I4]

and we have

In 5 #
2 p

0

h82

h n dx

5 f 2 #
2 p

0

cos2x

(1 1 f sinx)n ,

I0 5 p f 2,

I1 5 2 p [1 2 ! 1 2 f 2]

and for n . 1

In 5
1

n 2 1
[I *n 2 1 2 I *n 2 2] (64)
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where

I *n 5 #
2 p

0

dx

[1 1 f sin(x)]n , I *0 5 2 p ,

I *1 5
2 p

(1 2 f 2)1/2 , I *2 5
2 p

(1 2 f 2)3/2

I *3 5
p (2 1 f 2)

(1 2 f 2)5/2 , I *4 5
p (2 1 3 f 2)

(1 2 f 2)7/2

and for n . 4

I *n 5
1

1 2 f 2 F 1 2n 2 3

n 2 1 2 I *n 2 1 2 1 n 2 2

n 2 1 2 I *n 2 2 G (65)

Here D P (2)
l and F(2) are the pressure drop and the flow rate, respectively, in

the wave frame to the second order in a ,

D P (2)
l 5 D P l 0 1 a D P l 1 1 a 2 D P l , F (2) 5 F0 1 a F1 1 a 2F2 (66)

We also note that the relation between the dimensionless flow rate in

the wave frame (F (2)) and the time-mean flow rate in the fixed frame ( u (2))
is given by

u (2) 5 F (2) 1 1 (67)

6. NUMERICAL RESULTS AND DISCUSSION

We have obtained an analytical solution to the field equations for the

peristaltic flow of an incompressible Newtonian fluid with suspended particles

in a planar channel by using a regular perturbation series in terms of the
dimensionless wave number a . The results of our analysis are presented

as follows.

1. The pressure rise±flow rate relationship for the parameters Re, C, f ,

and a .

2. The streamlines and trapping regions for the parameters Re, f , a , C,
and u (2).

6.1. Pressure Rise ± Flow Rate Relations

Figure 1 is a graph of the dimensionless pressure change per wavelength

D P (2)
l with the dimensionless flow rate ( u (2)) for the case {Re 5 0, f 5 0.3,

C 5 0.4, a 5 0, 1, 2, 3}. The graph is sectored so that the upper right-hand

quadrant (I) denotes the region of peristaltic pumping. where u (2) . 0 (positive
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Fig. 1. Graph of the pressure gradient per wavelength D P (2)
l vs. dimensionless flow rate u (2)

at Re 5 0.0, C 5 0.4, f 5 0.3, and various values of the wave number a (---, f 5 0.0,

Poiseuille flow).

pumping) and D P (2)
l . 0 (adverse pressure gradient). Quadrant II, where

D P (2)
l , 0 (favorable pressure gradient) and u (2) . 0 (positive pumping), is

designated as augmented flow. Quadrant IV, such that D P (2)
l . 0 (adverse

pressure gradient) and u (2) , 0 is called retrograde or backward pumping,
the flow is opposite to the direction of the peristaltic motion.

Figure 1 shows that the peristaltic pumping rate u (2) increases (for the

same D P (2)
l ) as a increases for the case {Re 5 0, f 5 0.3, C 5 0.4}. Also

shown in Fig. 1 the case for f 5 0, which is Poiseuille flow of a particle±fluid

suspension between two plates.

Figure 2a is a graph of the pressure change per wavelength D P (2)
l vs.

the observed flow rate u (2) for the case {Re 5 10, a 5 0.06, f 5 0.3, C 5
0.0, 0.2, 0.4, 0.59}. Figure 2b is similar to Fig. 2a except that f 5 0.6. We

observe that an increase in C results in a decrease in the pumping rate if all

other parameters are held fixed. Also, the backward pumping increases with

increasing concentration of the particles.
Figure 3 shows the effect of the Reynolds number on the pumping rate

for the case {C 5 0.4, a 5 0.2, f 5 0.8, Re 5 0.0, 50, 100, 150}. We

observe that an increase in Re results in an increase in the pumping rate if

all other parameters are held fixed.
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(a)

(b)

Fig. 2. Graph of the pressure gradient per wavelength D P (2)
l vs. dimensionless flow rate u (2)

at Re 5 10 and a 5 0.06, for various values of the concentration C, and (a) f 5 0.3, or (b)

f 5 0.6 (---, f 5 0.0, Poiseuille flow).
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Fig. 3. Graph of the pressure gradient per wavelength D P (2)
l vs. dimensionless flow rate

u (2) at a 5 0.2, f 5 0.8, C 5 0.4, and for various values of the Reynolds number Re.

Fig. 4. Graph of the ratio of the pressure change per wavelength for zero peristaltic pumping

to that for zero Reynolds number vs. Re* at C 5 0.5, a 5 0.06, and various values of the

amplitude ratio f .
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Fig. 5. Graph of the streamlines C (2)
f at Re 5 1., a 5 0.0628, C 5 0.0, f 5 0.4, and u (2) 5

(a) 0.5, (b) 0.7, (c) 1, (d) 2, (e) 5.

We define the pressure gradient required to obtain zero pumping ( u (2) 5
0) as D P (2)

u 5 0. Figure 4 is a graph of P [ D P (2)
l / D P (2)

u 5 0(Re* 5 0) vs. Re* for

varying occlusion f at C 5 0.5, a 5 0.06, which shows the effects of Re*
and f on the pumping rate, where Re* is the modified Reynolds number

(Re* 5 Re a /2 p ) (Siddiqui and Schwarz 1994), which is the Stokes number.

6.2. Streamlines and Fluid Trapping

The phenomenon of trapping, whereby a bolus (defined as a volume of

fluid bounded by closed streamlines in the wave frame) is transported at the
wave speed, has been studied by several investigators (Shapiro et al., 1969;

Jaffrin, 1973; Siddiqui and Schwarz, 1993, 1994). Trapping occurs in a

hyperspace of the variables ( u (2), f , Re, C, a ). Here we have examined the

case of small Reynolds number. Figures 5a±5e are graphs of streamlines for
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Fig. 5. Continued.
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the conditions {Re 5 1, f 5 0.4, C 5 0.0, a 5 0.0628, and u (2) 5 0.5, 0.7,

1, 2, 5}; Fig. 5a shows that there is no trapping region for peristaltic pumping;

Fig. 5b shows the centerline trapped eddy, which is described by Siddiqui

and Schwarz (1994); Figs. 5c±5e show that the trapped bolus is small as

u (2) increases.
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